Abstract

This study presents a simple approach to modelling the effect of temperature on the soil–water retention curves (SWRCs) of deformable soils and takes into consideration the following two aspects: (1) the effect of temperature on the liquid–gas interfacial tension and (2) temperature-induced deformation of the soil skeleton. The first aspect, the temperature effect, can be modelled using an equation proposed by Grant and Salehzadeh [18], but the second aspect is generally neglected in the literature. To quantify the thermo-hydro-mechanical (THM) deformation of unsaturated soils (i.e., the second aspect mentioned above), a simple volume change equation, referred to as the non-isothermal SFG volumetric equation, is proposed on the basis of the original SFG framework [37]. A three-dimensional THM yield surface in the space of net mean stress, suction and temperature is presented here. The proposed volume change equation is integrated into the non-isothermal SWRC by means of a simple hydro-mechanical coupling law [38]. The performance of the non-isothermal SFG volumetric equation and the non-isothermal SWRC equation is investigated through several numerical examples. A number of experimental results reported in the literature are employed to confirm the validity of the proposed non-isothermal SFG volume change equation and the non-isothermal SWRC equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.