Abstract

The performance of the DNDC and Daisy model to simulate the water dynamics in a floodplain soil of the North China Plain was tested and compared. While the DNDC model uses a simple cascade approach, the Daisy model applies the physically based Richard's equation for simulating water movement in soil. For model testing a three years record of the soil water content from the Dong Bei Wang experimental station near Beijing was used. There, the effect of nitrogen fertilization, irrigation and straw removal on soil water and nitrogen dynamics was investigated in a three factorial field experiment applying a split-split-plot design with 4 replications. The dataset of one treatment was used for model testing and calibration. Two other independent datasets from further treatments were employed for validating the models. For both models, the simulation results were not satisfying using default parameters. After parameter optimisation and the use of site-specific van Genuchten parameters, however, the Daisy model performed well. But, for the DNDC model, parameter optimisation failed to improve the simulation result. Owing to the fact that many biological processes such as plant growth, nitrification or denitrification depend strongly on the soil water content, our findings bring us to the conclusion that the site-specific suitability of the DNDC model for simulating the soil water dynamics should be tested before further simulation of other processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.