Abstract
Mechanical properties of hydrogels with reversible transition metal-polymer crosslinks can be flexibly tuned depending on the dissociation kinetics of the metal bond. We use rheology to investigate the sol-gel transition of a Fe(III)-poly(acrylic acid) network with varying crosslinker content and model the corresponding mechanical relaxation at different stages of gelation. The system transitions from an unentangled chain regime to a crosslink dissociation dominated regime, where the relaxation is governed by two timescales with different activation energies. To account for the interplay of chain and crosslinker dynamics, a time-temperature-superposition procedure is introduced for both processes separately, thus separating the dynamic processes in these thermorheologically complex dynamic networks. The activation energy of chain relaxation remains unchanged whether or not the chain participates in the network. To model contributions to the dynamic modulus of each process, we combine concepts from fractional viscoelasticity with a generalized Maxwell model, which describes the dynamics of an unentangled chain solution with reversible crosslinks. This allows us to quantify the evolution of viscoelastic parameters in the course of gelation, where we find that the terminal relaxation time of the gels increases less than expected at high crosslinker contents. This result is attributed to a facilitated crosslink exchange mechanism and a lower pH of the gel matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.