Abstract

This paper examines an approach to model the vibrations of a deformed rolling tyre at low frequencies (below 500 Hz). The starting point for this approach is a finite element (FE) model of the tyre and the aim is to calculate the dynamic response of a rolling tyre including the details of its complex build up. This allows to relate the tyre design parameters to its vibro-acoustic properties. In this context, a modal approximation based on the eigenvalues and eigenvectors extracted from the detailed FE model of the tyre seems a computationally efficient possibility. In the proposed approach the natural frequencies and modeshapes of a deformed tyre are calculated in a standard FE package using the full (nonlinear) FE model. Subsequently, this modal base is transformed to determine the response of the rotating tyre in a fixed (Eulerian) reference frame. Furthermore, this approach makes it possible to define a receptance matrix for the rotating tyre. Results from relatively simple tyre models show that the effects of rotation are modelled correctly and are in accordance with results from literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call