Abstract

Recent investigations connected with implantable defibrillators yielded new data on heart electrophysiology, resulting in reassessment of existing and advancing of new types of electrical impulses. Different electrical equivalent circuits were proposed for modelling intracardiac and transthoracic defibrillation pulse waveforms, comprising generator, electrode interface and tissue resistances. We attempted modelling of the transmembrane voltage Vm time course, induced by different applied voltage Vs waveforms, taking into account only the shapes and the relative Vs and Vm amplitudes. The excitable cell membrane impedance Z was modeled with higher resistance and lower capacitance, so that a shunting effect on the generator and tissue resistances was avoided. The result was a very simple equivalent circuit. We proposed criteria for efficient defibrillation pulse waveforms yielding a straightforward approach to model existing and new pulses and to assess their efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.