Abstract

The relationship between species richness and the prevalence of vector-borne disease has been widely studied with a range of outcomes. Increasing the number of host species for a pathogen may decrease infection prevalence (dilution effect), increase it (amplification), or have no effect. We derive a general model, and a specific implementation, which show that when the number of vector feeding sites on each host is limiting, the effects on pathogen dynamics of host population size are more complex than previously thought. The model examines vector-borne disease in the presence of different host species that are either competent or incompetent (i.e. that cannot transmit the pathogen to vectors) as reservoirs for the pathogen. With a single host species present, the basic reproduction ratio R0 is a non-monotonic function of the population size of host individuals (H), i.e. a value exists that maximises R0. Surprisingly, if a reduction in host population size may actually increase R0. Extending this model to a two-host species system, incompetent individuals from the second host species can alter the value of which may reverse the effect on pathogen prevalence of host population reduction. We argue that when vector-feeding sites on hosts are limiting, the net effect of increasing host diversity might not be correctly predicted using simple frequency-dependent epidemiological models.

Highlights

  • Zoonotic diseases show complex dynamics that are influenced by a wide range of ecological factors

  • The reduction in pathogen transmission in the presence of an incompetent host species is a separate effect from the reduced transmission observed in a single-host system when pathogen prevalence is low, as the dilution effect alters the dynamic equations of the host-pathogen system

  • We have examined a model showing dilution or amplification effects when the number of feeding sites on the host animals is limited

Read more

Summary

Introduction

Zoonotic diseases show complex dynamics that are influenced by a wide range of ecological factors. The term ‘‘dilution effect’’ (sensu [3,4,5]) describes the reduction in infection prevalence when a vector can feed on more than one host species. Hosts vary in their competence as pathogen reservoirs, generally with one or a few species being efficient (competent hosts) and others being inefficient reservoirs (incompetent hosts) [6]. The reduction in pathogen transmission in the presence of an incompetent host species is a separate effect from the reduced transmission observed in a single-host system when pathogen prevalence is low, as the dilution effect alters the dynamic equations of the host-pathogen system. Some empirical studies have supported these predictions (e.g. [11,12,13]), while other studies have shown that increasing host species richness can have mixed effects (e.g. [14])

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.