Abstract

A three-dimensional model covering the northwest European Shelf and part of the adjacent Atlantic Ocean is used to examine the influence of water depth change upon the distribution of maximum tidal bed stress. The direction of bed stress is an indicator of sediment movement as bed load and various regions of convergence and divergence in good agreement with observations are identified. Calculations are performed with water depths reduced by 35 m, corresponding to 10 000 years before present (B.P.). Initially, the model is forced by only the M2 tide, although subsequently five constituents, namely M2, S2, N2, K1 and O1, are used for tidal forcing. Although the distribution of extreme bed stresses computed with only M2 tidal forcing is comparable to that computed with five tides, the additional tidal constituents modify the magnitude of the bed stress. In particular the diurnal tides show regions of local enhanced current amplitude in the shelf-edge region with corresponding changes in bed stress. When water depths are reduced such that the North Sea and English Channel are separated, then there is a significant change in the tidal distribution in the shallow Southern Bight which influences bed-stress distributions and hence bed-load sediment transport in the area. Besides changes in shallow regions, the distribution of tides at the shelf edge is affected. A discussion of the limitations of the present coarse-grid model in shelf-edge regions and how it can be used to provide boundary conditions for limited-area three-dimensional models that can include stratification is presented. Also the importance of stratification for sediment movement at the shelf edge is briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.