Abstract

Dissimilar materials, aluminium 2024-T3 and ultralow carbon steel, have been welded by a novel process called friction melt bonding. A finite element thermal model is developed to predict temperature cycles and to estimate the fusion pool geometry and the intermetallic bonding layer thickness. The total mechanical power input in pseudo-steady state is inferred from in situ measurements at the tool torque and rotational speed. Temperature dependent properties, including the latent heat of fusion, and proper contact conditions between the welded plates and the backing plate are included. Predicted temperatures are in agreement with the measurements at various distances from the weld centreline. Molten pool geometries and intermetallic thicknesses, whose control is crucial to insure good weld mechanical performances, are also in accordance with the experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call