Abstract
In this paper, the unsteady state heat transfer equations with time dependent boundary conditions are coupled with a two-dimensional finite element method to predict the work-roll temperature distribution during the continuous hot slab rolling process. To achieve an accurate temperature field, the effects of various factors including the thermal relationship of the work-roll and the metal slab, the idling work-roll revolutions, the rolling speed, the slab/roll interfacial heat transfer coefficient, and the magnitude of the thickness reduction of the slab at each deformation pass are taken into account. Comparisons between the predicted and published experimental results are used to illustrate the validity of the mathematical model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Modelling and Simulation in Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.