Abstract

A theoretical model of the excited singlet ungerade electronic states of the nitrogen molecule is presented. This work is an extension of a previous study (D. Stahel, M. Leoni and K. Dressler, J. Chem. Phys. 79, 2541–2558, 1983) with the addition of rotational interactions between states of different symmetry. These rotational interactions together with the homogeneous couplings frequently lead to extreme mixing of the states. This model is being used to analyse the high resolution vacuum ultraviolet emission spectrum which is currently being recorded photoelectrically. The ultimate goal of this work is the reliable interpretation of the low resolution emission spectra observed from planetary atmospheres, notably that of Titan, and the transitions assigned as being important in the Voyager 1 spectra of Titan are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.