Abstract

In Mediterranean climates, high temperatures and vapour pressure deficits are currently observed in greenhouses during summer. These conditions are responsible for a high transpiration rate leading to greater water consumption. Measuring and modelling transpiration can be useful for efficient irrigation management by allowing prediction of short-term water demand. The rate of transpiration of zucchini crops (Cucurbita pepo L.) grown in soilless culture was measured in a greenhouse located at Viterbo, central Italy, during spring–summer 2002. The Penman-Monteith equation was used to predict the potential transpiration of the plants averaged over 30-min intervals using different approaches in the calculation of aerodynamic resistance. The values obtained were compared with transpiration measured by a gravimetric method by weighing plants on an electronic balance. Leaf temperature was lower (up to 5°C) than air temperature on clear summer days owing to high transpiration rates. Stomatal resistance was computed and found to be exponentially related to solar radiation. The best fit in transpiration between the Penman-Monteith calculated and those measured was achieved when the heat transfer in the former was obtained as a process of mixed convection, where the slope of the regression was 1, and there was improvement of the coefficient of determination (R2 = 0.96). A simplified model of daytime transpiration based on easily measured variables (solar radiation and vapour pressure deficit) was developed and produced strong agreement with the gravimetric method (R2 = 0.93).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call