Abstract

Archery performance has been shown to be dependent on the resonance frequencies and operational deflection shape of the arrows. This vibrational behaviour is influenced by the design and material of the arrow and the presence of damage in the arrow structure. In recent years arrow design has progressed to use lightweight and stiff composite materials. This paper investigates the vibration of composite archery arrows through a finite difference model based on Euler–Bernoulli theory, and a three-dimensional finite element modal analysis. Results from the numerical simulations are compared to experimental measurements using a Polytec scanning laser Doppler vibrometer (PSV-400). The experiments use an acoustically coupled vibration actuator to excite the composite arrow with free–free boundary conditions. Evaluation of the vibrational behaviour shows good agreement between the theoretical models and the experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.