Abstract

This paper presents a finite-element-based computational model to evaluate the thermal behaviour of composite slabs with a steel deck submitted to standard fire exposure. This computational model is used to estimate the temperatures in the slab components that contribute to the fire resistance according to the load-bearing criterion defined in the standards. The numerical results are validated with experimental results, and a parametric study of the effect of the thickness of the concrete on the temperatures of the slab components is presented. Composite slabs with normal or lightweight concrete and different steel deck geometries (trapezoidal and re-entrant) were considered in the simulations. In addition, the numerical temperatures are compared with those obtained using the simplified method provided by the standards. The results of the simulations show that the temperatures predicted by the simplified method led, in most cases, to an unsafe design of the composite slab. Based on the numerical results, a new analytical method, alternative to the simplified method, is defined in order to accurately determine the temperatures at the slab components and, thus, the bending resistance of the composite slabs under fire conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call