Abstract

An experimental and numerical study concerning the tensile behaviour of adhesively-bonded carbon–epoxy scarf repairs is presented, using scarf angles ranging from 2° to 45°. A mixed-mode cohesive damage model adequate for ductile adhesives was used to simulate the adhesive layer. The cohesive laws of the adhesive layer, composite interlaminar and composite intralaminar (in the transverse and fibre directions) in pure modes I and II, necessary to simulate numerically the experimental failure paths, were previously characterized using an inverse method. Validation of this methodology was accomplished in terms of repair initial stiffness, maximum load and the corresponding displacement, as well as the failure mode. A good agreement between the numerical predictions and the experiments showed that the proposed methodology can be successfully applied to joints or repairs bonded with ductile adhesives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.