Abstract
The objective of this study is the mathematical description of the structure and function of the extracellular polymeric substances (EPS) in biofilms. The basic assumptions of the EPS biofilm model are: the production of EPS in biofilms is coupled to the growth of micro-organisms the production of EPS is additionally coupled to the substrate conditions the EPS represent a considerable volume fraction of the matrix in biofilms and thus the density of the biofilms is strongly influenced by the EPS sorption of biocides and pollutants in biofilms occurs mainly to EPS the EPS can be used as an energy source during substrate limited phases. The mathematical model has been derived as a system of partial differential equations. The numerical solution of these complex balance equations has been done by a self-adaptive Galerkin-h-p-method. It can be shown, that on the one hand the simulation of substrate conversion and biofilm growth with the EPS-biofilm model yields similar results as the known biofilm models without consideration of the EPS fraction. On the other hand the advantage of the EPS-biofilm model is a better understanding of biofilm structure, which is mainly influenced by the EPS fraction in the biofilm. Furthermore, the sorption of pollutants, such as heavy metals and chlorinated organic substances, can be simulated in more detail.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.