Abstract
Although schistosomiasis containment campaigns have recorded substantial success in most developed countries, sub-Saharan Africa still suffers greatly under the burden of the disease. A basic mathematical model to assess the impact of concomitant immunity in humans and environmental transmission of schistosomiasis disease progression is formulated. Mathematical analysis is carried out to establish the existence of the equilibrium points providing necessary conditions for their local and global stability. Numerical simulations are done to analyze the effects of environmental transmission and processes associated with development of concomitant immunity. Our results suggest that schistosomiasis burden is increased by direct and indirect contribution of individuals with concomitant immunity to the schistosomiasis infection chain, increasing the shedding of miracidia upto the development of cercariae promoting the growth of cercariae, increase in environmental transmission due to cercariae, reducing the clearance rate of cercariae and reducing the development of humans and non-human mammals escape mechanisms from cercariae attack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.