Abstract

The aims of this study were to develop a kinematic model of the spine, seen as a continuous deformable body and to identify the smallest set of surface markers allowing adequate measurements of spine motion. The spine is widely considered as a rigid body or as a kinematic chain made up of a smaller number of segments, thereby introducing an approximation. It would be useful to have at our disposal a technique ensuring accurate and repeatable measurement of the shape of the whole spine. Ten healthy subjects underwent a whole-spine radiographic assessment and, simultaneously, an optoelectronic recording. Polynomial interpolations of the vertebral centroids, of the whole set of markers were performed. The similarity of the resulting curves was assessed. Our findings indicate that spine shape can be reproduced by 5th order polynomial interpolation. The best approximating curves are obtained from either 10- or 9-marker sets. Sagittal angles are systematically underestimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.