Abstract

Simple SummarySince African swine fever (ASF) virus in wild boar populations can spill over to domestic pigs, it is crucial to understand the disease determinants in the wild compartment. However, the imperfect detection sensitivity of wild boar surveillance jeopardizes our ability to understand ASF spatial distribution. In this study, we used national surveillance data of ASF in wild boars collected in the Republic of Korea from 2019–2020 to model the spatial distribution of ASF-positive carcasses for two successive study periods associated with different surveillance intensity. The model allowed us to identify disease risk factors in the Republic of Korea, determine the spatial distribution of the risk of ASF, and estimate the sensitivity of surveillance. The outputs of this study are relevant to policy makers for developing and improving risk-based surveillance programs for ASF in wild boars.In September 2019, African swine fever (ASF) was reported in South Korea for the first time. Since then, more than 651 ASF cases in wild boars and 14 farm outbreaks have been notified in the country. Despite the efforts to eradicate ASF among wild boar populations, the number of reported ASF-positive wild boar carcasses have increased recently. The purpose of this study was to characterize the spatial distribution of ASF-positive wild boar carcasses to identify the risk factors associated with the presence and number of ASF-positive wild boar carcasses in the affected areas. Because surveillance efforts have substantially increased in early 2020, we divided the study into two periods (2 October 2019 to 19 January 2020, and 19 January to 28 April 2020) based on the number of reported cases and aggregated the number of reported ASF-positive carcasses into a regular grid of hexagons of 3-km diameter. To account for imperfect detection of positive carcasses, we adjusted spatial zero-inflated Poisson regression models to the number of ASF-positive wild boar carcasses per hexagon. During the first study period, proximity to North Korea was identified as the major risk factor for the presence of African swine fever virus. In addition, there were more positive carcasses reported in affected hexagons with high habitat suitability for wild boars, low heat load index (HLI), and high human density. During the second study period, proximity to an ASF-positive carcass reported during the first period was the only significant risk factor for the presence of ASF-positive carcasses. Additionally, low HLI and elevation were associated with an increased number of ASF-positive carcasses reported in the affected hexagons. Although the proportion of ASF-affected hexagons increased from 0.06 (95% credible interval (CrI): 0.05–0.07) to 0.09 (95% CrI: 0.08–0.10), the probability of reporting at least one positive carcass in ASF-affected hexagons increased from 0.49 (95% CrI: 0.41–0.57) to 0.73 (95% CrI: 0.66–0.81) between the two study periods. These results can be used to further advance risk-based surveillance strategies in the Republic of Korea.

Highlights

  • African swine fever (ASF), caused by the African swine fever virus (ASFV), is a highly contagious viral disease that affects both domestic and wild pigs

  • The objectives of this study were to (1) identify the risk factors associated with the presence of ASF and those associated with the reporting rate of ASF-positive carcasses, (2) estimate the prevalence and sensitivity of the surveillance system, and (3) understand the dynamics of ASF infection among the wild boar population

  • Elevation, slope, area of rice paddy and surface water, minimal distance to North Korea, heat load index (HLI), human population density, enhanced vegetation index (EVI), Land surface temperature at day (LSTD), rainfall, and normalized difference water index (NDWI) were statistically significant at the 20% level in both the Poisson and logistic parts of the regression analysis; elevation, slope, area of rice paddy, presence of wetland, minimal distance to North Korea, HLI, human population density, EVI, and rainfall were significant at the 20% level only in the Poisson part of the analysis; and the area of rice paddy, minimal distance to North Korea, human population density, LSTD, LSTN, rainfall, and NDWI were significant at the 20% level in only the logistic part of the analysis

Read more

Summary

Introduction

African swine fever (ASF), caused by the African swine fever virus (ASFV), is a highly contagious viral disease that affects both domestic and wild pigs. Symptoms of ASFV infection include fever, hemorrhage, vomiting, and diarrhea, and nearly 100% mortality can occur with some strains, including the ASFV genotype II that is circulating in the Republic of Korea [1]. Since ASFV can spill over between wild boars (Sus scrofa) and domestic pigs, it is crucial to understand the disease dynamics in both species. Many countries have developed surveillance systems for wild boars [4,5,6,7,8]. Since ASF has a short infectious period due to severe clinical symptoms, which rapidly leads to death [9], contact with

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call