Abstract

The areal distribution of snow cover and the variability of its characteristics were investigated at various locations in the eastern Swiss Alps. An areal energy-balance (AEB) model was used to calculate the predominant energy fluxes at the snow–atmosphere interface based on automatic meteorological measurements as input. By coupling the AEB model with a one-dimensional, physically based mass and energy-balance model of the snowpack, temperature distribution as well as energy and mass flow in the snowpack were simulated at three different locations in the topographically complex environment at Weissfluhjoch-Davos, 2540 m a.s.l. On a horizontal test site, calculated energy fluxes and characteristics of the snow cover are in good agreement with their measured counterparts. On inclined slopes, the temperature distribution is well represented by the coupled models, but the snow depth and density are not yet satisfactorily simulated. This discrepancy may be attributed to inhomogeneous accumulation and deposition of snow on the weather and lee sides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call