Abstract

The objective of the present study was to determine the shelf-life of minimally-processed fresh-cut apples treated with anti-browning agents under modified atmosphere packaging. Shelf-life is calculated by application of mathematical models with product quality attributes such as: pH; soluble solids content (SSC); CIELab color parameters; sensory evaluation; and microbial spoilage (Salmonella spp., Staphylococcus aureus, Sulfite-Reducing Clostridium, Enterobacteriacae, Escherichia coli, Aerobic mesophilic bacteria (AMB), yeast, mold, Listeria monocytogenes). Golden Delicious and Cripps Pink apple cultivars were individually treated with one of several anti-browning treatments and packaged in a modified atmosphere (N2 = 90.5%; CO2 = 2.5%; O2 = 7%), and stored at 4 °C. The treatments were; 1) non-treated (control); 2) dipping in a mixture of ascorbic and citric acids for 3 min with and without ultrasound (40 kHz, 3 min) treatment; and 3) Ca-ascorbate with/without ultrasound (40 kHz, 3 min) treatment. Results revealed that Cripps Pink was the most suitable variety for minimally-processed fresh-cut product. All the investigated treatments were equally effective in improving the quality of the product compared to the control. Shelf-life predictive models were developed based on the following quality attributes: apple cultivar, anti-browning treatment, color parameters, sensory evaluation, pH, and SSC. Maximum growth rates for Enterobacteriacae and Aerobic mesophilic bacteria were 0.25 ± 0.02 log CFU/g/day and 0.46 ± 0.02 log CFU/g/day, respectively. In order to optimize fresh-cut production, these models can be useful tool for predicting the longest shelf-life time with monitoring microbial activity during production. All models are freely available on-line (“Anti-browning Apple Calculator – C.A.P.P.A.B.L.E.©”; apple.pbf.hr or 31.147.204.87).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.