Abstract

In continuous phosphate-limited conditions, under pH control from high pH (pH ≳ 5.2) to low pH (pH ≲ 5.2), the metabolism of the Gram-positive bacterium Clostridium acetobutylicum,switches from acid to solvent production. Three main enzymes are responsible for the shift, acetoacetate decarboxylase (Adc), alcohol dehydrogenase (AdhE1/2) and a CoA-transferase (CtfA/B), which are produced in increased quantities during solventogenesis. A two-population model, Millat et al. (2013) and fitted to such ‘forward’-shift data, can explain this, as well as observed changes in optical density immediately following the shift: an acidogenic subpopulation is washed out and a solventogenic subpopulation grows in its place, each with distinct physiologies and proteomes. We fit this model to a ‘reverse’-shift experiment, where the pH is increased from solventogenic to acidogenic conditions. We find corresponding changes in reaction rates, with AdhE1 and Adc production falling, as in the ‘forward’ experiments; however, for CtfA/B, the best fit surprisingly arises from the same level of production in both conditions. We propose experiments that would test whether this is a model artefact or accurately reflects cultures shifted in this reverse direction, and, if true, may suggest that over-expressing CtfA/B in both solventogenic and acidogenic conditions could improve the efficiency of fermentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.