Abstract

To optimize crops irrigation strategy is crucial to improve the production sustainability in a climate change scenario characterized by an ever-increasing water shortage. Crops simulation models, combined with experimental data, can be useful tools. AquaCrop, a crop water productivity model, has been widely used to reach this aim in open field condition but it has been limited adopted under greenhouse conditions. This study aims to calibrate and validate AquaCrop model through a greenhouse tomato cultivation using a split plot experimental design. Crop irrigation management was the main treatment [full irrigation (FI) at 100 % crop evapotranspiration (ETc) vs. deficit irrigation (DI) at 75 % of FI] and fertilization [no fertilization, mineral fertilization, organic fertilization with compost, and organic fertilization with sieved (< 2 mm) compost] the subplots. Fresh yield, above-ground biomass, water productivity, and net irrigation requirements were simulated. The validated model also permitted to evaluate the impacts of changing temperature outside the greenhouse on fruits yield, biomass, and water productivity using 30 years of historical weather data. The results showed that the model accurately estimated crop parameters, although it tended to overestimate soil water content. On average, DI reduced fruit yield by 14.1 % compared to FI. Over the last 30 years, the validated model permitted to calculate an average fruits yield reduction due to DI of 12.6 %. Our findings suggest that models like AquaCrop can assist in optimizing greenhouse agriculture by predicting crop performance under different conditions. Our study also highlights that external temperature and AquaCrop can be used to estimate tomato yields in the greenhouse by providing decision support tools for end-users (farmers, farmer associations, and policymakers) seeking sustainable and efficient greenhouse farming practices in a changing climate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.