Abstract

AbstractThe planned removal of four dams on the Klamath River (anticipated 2024) will be the largest river restoration effort ever undertaken on the planet. Dam removal will restore access to >50 km of the Klamath River mainstem for coho salmon, but mainstem habitat may not be suitable for rearing juvenile coho salmon. Instead, small tributaries may provide most rearing habitat for reestablishing coho salmon. We used four approaches to evaluate six Klamath River tributaries above existing dams to assess their potential to support juvenile coho salmon: (1) We measured summer temperature regimes and evaluated thermal suitability. (2) We applied an Intrinsic Potential (IP) model to evaluate large‐scale geomorphological constraints on coho salmon habitat. (3) We used the Habitat Limiting Factors Model (HLFM) to estimate rearing capacity for juveniles given current habitat conditions. (4) We developed an occupancy model using data from reference tributaries to predict coho salmon rearing distribution. All six streams had summer temperatures cooler than the mainstem Klamath River. However, five of the streams have barriers that will restrict coho salmon to within 5 km of the confluence with the Klamath River and two were disconnected mid‐summer. Despite these constraints, the tributaries will likely produce coho salmon. Most streams had high IP in their lower reaches, the HLFM model estimated a total capacity of 105,000 juvenile coho salmon, and the occupancy model predicted juvenile coho salmon will rear throughout the accessible reaches. Protection and habitat enhancement for these tributaries will be important for coho salmon reestablishment post‐dam removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call