Abstract

We investigate MeV-GeV $\gamma$-ray outbursts in 3C 273 in the frame of a time-dependent one-zone synchrotron self-Compton (SSC) model. In this model, electrons are accelerated to extra-relativistic energy through the stochastic particle acceleration and evolve with the time, nonthermal photons are produced by both synchrotron and inverse Compton scattering of synchrotron photons. Moreover, nonthermal photons during a quiescent are produced by the relativistic electrons in the steady state and those during a outburst are produced by the electrons whose injection rate is changed at some time interval. We apply the model to two exceptionally luminous $\gamma$-ray outbursts observed by the Fermi-LAT from 3C 273 in September, 2009 and obtain the multi-wavelength spectra during the quiescent and during the outburst states, respectively. Our results show that the time-dependent properties of outbursts can be reproduced by adopting the appropriate injection rate function of the electron population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.