Abstract

Metamaterials are currently one of the most popular fields in microwave technology because their particular electromagnetic properties lead to a plenty of very relevant applications, both military and civilian. Additionally, the analysis and design of microwave components based on this kind of materials is one of the more challenging problems found by the applied electromagnetism community due to the complexity introduced in the mathematical formulation by their constitutive relationships. The most general case of metamaterial is the bi-anisotropic one, where both the electric field and the electric induction simultaneously depend on the magnetic field and the magnetic induction. In this paper, we present a new and powerful Finite Element Method scheme valid for the analysis of the most general waveguides, filled with lossy bi-anisotropic linear materials. Edge elements have been used in order to prevent the appearance of spurious solutions and the final eigensystems are very sparse, thus allowing a great memory and computing time saving.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.