Abstract
AbstractSoil detachment by rill flow is a key process of rill erosion, modelling this process can help in understanding rill erosion mechanisms. However, many soil detachment models are established on conceptual assumptions rather than experimental data. The objectives of this study were to establish a model of soil detachment by rill flow based on flume experimental data and to quantitatively verify the model. We simulated the process of soil detachment by rill flow in flume experiments with a soil‐feeding hopper using loessial soil on steep slopes. Seven flow discharges, six slopes and five sediment loads were combined. Soil detachment capacity, sediment transport capacity, and soil detachment rate by rill flow under different sediment loads were measured. The process of soil detachment by rill flow can be modelled by a dual power function based on soil detachment capacity and transport capacity deficit as variables. The established model exhibited high credibility (NSE=0.97; R2=0.97). The contributions of soil detachment capacity and transport capacity deficit to soil detachment rate by rill flow reached 60% and 36%, respectively. Soil detachment capacity exerted more influence on soil detachment rate than did transport capacity deficit. The performance of the WEPP rill erosion equation is also favourable (NSE=0.95; R2=0.97). The two power exponents in the model we established strengthen the role of soil detachment capacity in soil detachment rate and weaken that for transport capacity deficit. Soil detachment capacity and transport capacity deficit played important roles in the determination of soil detachment rate by rill flow. The results can be applied to implement the numerical modeling and prediction of rill erosion processes on steep loessial hillslopes. © 2019 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.