Abstract
Viscosity and compressibility have a major impact upon the efficiency and dynamic response of fluid power systems. The viscosity and compressibility of five hydraulic fluids have been measured for temperatures to 150 oC and pressures to 350 MPa. A new correlation of viscosity with temperature and pressure based on the thermodynamic scaling rule of Roland et al. is offered. This correlation provides a means to model elastohydrodynamic effects in fluid power components and extends the accuracy of fluid power system models to higher pressure. The role of phase change and the resulting thixotropy in mineral based fluids is experimentally investigated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.