Abstract
This paper presents a new constitutive model on the poroplastic behaviour of earthen materials accounting for stiffness degradation, using the approach of continuum damage mechanics. The poroplastic behaviour is modelled based on the bounding surface plasticity (BSP) theory and the concept of effective stress while isotropic damage is modelled using a scalar variable. Plastic flow and damage evolution occur simultaneously in a coupled process which take into account the impact of suction. The model was successfully validated against results of triaxial compression tests performed at different relative humidities and confining pressures. Despite the relatively small number of material parameters, this model can reproduce the essential features of earthen materials behaviour observed experimentally: suction-induced hardening and stiffening, post-peak softening, as well as the progressive transition from contractant to dilatant volumetric behaviour. Use of the BSP theory allows to reproduce a smooth stress–strain relation as experimentally observed, instead of an abrupt change upon plastic yielding predicted by classic elastoplastic models. Furthermore, the present model also furnishes a quantitative description on the degradation of elastic properties hitherto not accounted for, thanks to the additional scalar damage variable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.