Abstract
Portal hypertension is the initial and main consequence of liver cirrhosis. Currently the diagnosis relies on invasive and complex operation. This study proposed a new computational method in computational fluid dynamics (CFD) analysis to noninvasively measure the portal pressure gradient (PPG) by considering the liver region as porous media to account for the patient-specific liver resistance. Patient-specific computational models based on the CT scan images and the ultrasound (US) velocity measurement was established. The results show that the PPG derived from CFD analysis is in great agreement with clinical measured data (23.93 mmHg vs 23 mmHg). Validation of the numerical method and was performed by post-TIPS PPG measurement (10.69 mmHg vs 11 mmHg). Then the range of porous media parameters is investigated in a validation group of three patients. The computational method proposed in this study is promising in more accurately measuring the PPG noninvasively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.