Abstract

Alfvénic fluctuations of various scales are ubiquitous in the solar wind, with their non-linear interactions and eventual cascade resulting in an important heating mechanism to accelerate the solar wind via turbulent heating. Such fluctuations are also present in other transient & coherent plasma structures such as Coronal Mass Ejections (CMEs), and exhibit varying properties as compared to the solar wind plasma. In this study we investigate the interactions between solar wind Alfvénic fluctuations and CMEs using MHD simulations. We use an ideal magnetohydrodynamic (MHD) model with an adiabatic equation of state. An Alfvén pump wave is injected into the quiet solar wind by perturbing the transverse magnetic field and velocity components, and a CME is injected by inserting a flux-rope modelled as a magnetic cloud into the quasi-steady solar wind.We observe that upstream Alfvén waves experience a decrease in frequency and change in the wave vector direction due to the non-spherical topology of the CME shock front. The CME sheath inhibits the transmission of low frequency fluctuations due to the presence of non-radial flows in this region. The frequency of the solar wind fluctuations also affect the steepening of MHD fast waves causing the CME shock propagation speed to vary with the solar wind fluctuation frequencies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.