Abstract

It has been postulated that dimethyl sulphide (DMS) emissions from the oceans can produce new condensation nuclei and eventually cloud condensation nuclei. Thus, DMS may have a significant influence on the Earth's radiation budget. A study of this postulate has been conducted for marine boundary layer conditions using a newly developed chemistry–aerosol–cloud (CAC) modelling system. The CAC modelling system is a variable heterogeneous chemistry model including aerosol physics using the modal concept. A series of simulations describing the clean marine atmosphere with variations of DMS emissions are presented. These simulations show that DMS can increase the particle number concentration of non sea-salt sulphate in accumulation mode from 10% to 25% under clean marine atmospheric conditions, and the total production of accumulation mode particles from 5% to 15%. Furthermore, the importance of including a DMS loss to the liquid-phase aerosols is shown. If this link is not included then the number of particles in the accumulation mode can be increased by a factor up to 8.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.