Abstract
This work reports on a model that describes patient-specific absorbed dose-dependent DNA damage response in peripheral blood mononuclear cells of thyroid cancer patients during radioiodine therapy and compares the results with the ex vivo DNA damage response in these patients. Blood samples of 18 patients (nine time points up to 168 h post-administration) were analyzed for radiation-induced γ-H2AX + 53BP1 DNA double-strand break foci (RIF). A linear one-compartment model described the absorbed dose-dependent time course of RIF (Parameters: c characterizes DSB damage induction; k1 and k2 are rate constants describing fast and slow repair). The rate constants were compared to ex vivo repair rates. A total of 14 patient datasets could be analyzed; c ranged from 0.012 to 0.109 mGy-1, k2 from 0 to 0.04 h-1. On average, 96% of the damage is repaired quickly with k1 (range: 0.19-3.03 h-1). Two patient subgroups were distinguished by k1-values (n = 6, k1 > 1.1 h-1; n = 8, k1 < 0.6 h-1). A weak correlation with patient age was observed. While induction of RIF was similar among ex vivo and in vivo, the respective repair rates failed to correlate. The lack of correlation between in vivo and ex vivo repair rates and the applicability of the model to other therapies will be addressed in further studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.