Abstract

Temperature is hypothesized to contribute to increased pathogenicity and virulence of many marine diseases. The sea louse (Lepeophtheirus salmonis) is an ectoparasite of salmonids that exhibits strong life-history plasticity in response to temperature; however, the effect of temperature on the epidemiology of this parasite has not been rigorously examined. We used matrix population modelling to examine the influence of temperature on demographic parameters of sea lice parasitizing farmed salmon. Demographically-stochastic population projection matrices were created using parameters from the existing literature on vital rates of sea lice at different fixed temperatures and yearly temperature profiles. In addition, we quantified the effectiveness of a single stage-specific control applied at different times during a year with seasonal temperature changes. We found that the epidemic potential of sea lice increased with temperature due to a decrease in generation time and an increase in the net reproductive rate. In addition, mate limitation constrained population growth more at low temperatures than at high temperatures. Our model predicts that control measures targeting preadults and chalimus are most effective regardless of the temperature. The predictions from this model suggest that temperature can dramatically change vital rates of sea lice and can increase population growth. The results of this study suggest that sea surface temperatures should be considered when choosing salmon farm sites and designing management plans to control sea louse infestations. More broadly, this study demonstrates the utility of matrix population modelling for epidemiological studies.

Highlights

  • Many marine pathogens are capable of causing dramatic population, community- and ecosystem-level shifts and the patterns of infection are frequently associated with temperature [1], [2], [3], [4], [5]

  • Matrix Construction To evaluate the effects of temperature, seasonality and the host attachment rate on sea louse demography, we created stagestructured population projection matrices (PPM) for female sea lice based on parameters from the literature

  • The life history of L. salmonis has been studied in much more detail than many other sea lice in the Caligidae family and construction of similar matrix models for other species of sea lice may not be possible due to the lack of data needed for parameterization [56]; many aspects of sea louse life history are similar across species including temperature-dependent development, high fecundity and the existence of a free-swimming larval stage that has an endogenous energy supply [39], [56]

Read more

Summary

Introduction

Many marine pathogens are capable of causing dramatic population-, community- and ecosystem-level shifts and the patterns of infection are frequently associated with temperature [1], [2], [3], [4], [5]. High temperatures are often associated with increased frequency or severity of infection, as a result of altered development and survival of the pathogen, physiological changes in the host and range expansions [1], [2], [6], [7], [8]. In many cases only some of these interactions are understood or the etiologic agent of disease is unknown [1], [2], [6], [9]. Despite these challenges, water temperature often follows well-defined seasonal patterns and its effects should be predictable

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.