Abstract

It is usually assumed that post-glacial marine clay deposits, such as those found in Quebec, are generally intact below a shallow fractured crust (3–5 m depth). However, recent work has shown the presence of hydraulically-active fractures to depths of down to 16 m. In light of this finding, the potential impacts of these fractures on groundwater flow dynamics and slope stability are explored by comparing field data with the results of transient and steady-state groundwater models with and without fractures. Two slope geometries that exhibit contrasting groundwater flow directions and different fracture scenarios were considered. The results of the hydrogeological modelling were then imported into a slope stability model to determine how the hydraulic effects of these fractures impact slope stability. Results show that fractures increase hydraulic head when they act as preferential pathways for infiltration, but can also reduce hydraulic head by acting as pathways for water to more quickly exit the formation within the slope face. Therefore, from a hydrogeological perspective, fractures could improve or reduce slope stability depending on the groundwater flow system. As this study only addressed the hydrogeological impact of the fractures, future work should focus on the coupled hydromechanical impacts of these features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.