Abstract

Flooding resulting from collapse of a dam is a highly destructive event. It is important to accurately predict the flow behaviour so that potential mitigation strategies can be investigated for disaster management planning. The meshless SPH method has previously been able to model this class of extreme flow events. In this paper, we extend the method to include modelling of dam wall fragments. Collisions between dam wall fragments, between fragments and terrain and full two-way coupling between fragments and the free surface water flow is included. This gives a method that can specifically investigate the impact of the dam wall failure scenario on the subsequent inundation. The historical St. Francis dam failure is used to demonstrate the impact of including the dam fragments. It also provides a means of quantitatively investigating their effect in terms of arrival time and water height at a downstream power station. The scenario with multiple independently timed failures of different parts of the wall (which closely matches the historical failure) gives excellent agreement with the observed data and gives the best match of all failure scenarios. Traditionally such modelling is performed by solving the two dimensional shallow water equations which is not able to capture the three dimensional nature of the flow in earlier stages of dam flooding. We specifically investigate the three dimensional nature of flow structures and formation of multiple downstream hydraulic jumps. These strongly influence water height and therefore control the extent of flooding of tributary valleys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.