Abstract
<p>Forty percent of the plastic produced annually ends up in the ocean. What happens to the plastic after that is poorly understood, though a growing body of data suggests it is rapidly spreading throughout the ocean. The mechanisms of this spread are not straightforward for small, weakly or neutrally buoyant plastic size fractions (the microplastics), in part because they aggregate in marine snow and are consumed by zooplankton. This biological transport pathway is suspected to be a primary surface microplastic removal mechanism, but exactly how it might work in the real ocean is unknown. We search the parameter space of a new microplastic model embedded in an earth system model to show biological uptake significantly shapes global microplastic inventory and distributions, despite its being an apparently inefficient removal pathway.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.