Abstract

We address the question of the modelling of the fluid–structure interactions for a microcapsule enclosed by a finite-thickness wall, and of the prediction of the buckling behaviour when it is subjected to large displacements and deformations. Specifically, we model the strong coupling between the solid (the wall dynamics) and fluid (the flow inside and outside the capsule) mechanics, for a wall material that can be strain-hardening or softening, while accounting for the bending resistance due to thickness. The fluid flow is assumed to be inertialess on the capsule scale, which allows the use of the boundary integral formulation for the fluid velocity. We discuss the different simplifications that are made when designing a fluid–shell interaction model for large deformations, and present a shear-membrane-bending (SMB) shell model that allows for a non-linear wall stretching law. The performance of the model, as compared to a simple membrane model where bending resistance is neglected, is illustrated on a generic example: we consider an initially ellipsoidal capsule, freely suspended in a plane hyperbolic flow, that is subjected to such stringent deformation, that its short axis becomes the long one. We show that the simple membrane model predicts reasonably well the overall shape of the capsule, but cannot capture the detailed post buckling behaviour, for which a robust shell model is necessary. The SMB shell model complies with dominant membrane effects, remains stable even under large deformation and avoids numerical locking. It allows predicting post-buckling behaviour, which depends on the material constitutive law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.