Abstract

Numerous processes, past and present, have given rise to lateral and vertical variation in the soil and to its individual properties such as its salinity and electrical conductivity. The resulting patterns of variation are complex and appear to comprise both random and deterministic components. The latter dominates vertically as trends in most soil profiles, and in the situation we describe it is prominent in the horizontal plane, too. Describing this variation requires flexible choice of covariance function. The processes of model estimation and prediction by kriging in three dimensions are similar to those in two dimensions. The extra complexity of the three-dimensional variation requires practitioners to appreciate fully the assumptions that their choices of model imply and to establish ways of testing the validity of these assumptions. We have examined several covariance functions more commonly used to describe simultaneously variation in space and time and adapted them to model three-dimensional variation in soil. We have applied these covariance functions to model the variation in salinity in reclaimed land in the Yangtze delta of China where the apparent electrical conductivity (ECa) has been measured at numerous points down to 1.1m. The models take into account random and deterministic components in both the horizontal and vertical dimensions. The most suitable mixed model was then used to krige the ECa on a fine grid from which three-dimensional diagrams of the salinity are displayed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.