Abstract

BackgroundGlucose tolerance testing is a tool used to estimate glucose effectiveness and insulin sensitivity in diabetic patients. The importance of such tests has prompted the development and utilisation of mathematical models that describe glucose kinetics as a function of insulin activity. The hormone glucagon, also plays a fundamental role in systemic plasma glucose regulation and is secreted reciprocally to insulin, stimulating catabolic glucose utilisation. However, regulation of glucagon secretion by α-cells is impaired in type-1 and type-2 diabetes through pancreatic islet dysfunction. Despite this, inclusion of glucagon activity when modelling the glucose kinetics during glucose tolerance testing is often overlooked. This study presents two mathematical models of a glucose tolerance test that incorporate glucose-insulin-glucagon dynamics. The first model describes a non-linear relationship between glucagon and glucose, whereas the second model assumes a linear relationship.ResultsBoth models are validated against insulin-modified and glucose infusion intravenous glucose tolerance test (IVGTT) data, as well as insulin infusion data, and are capable of estimating patient glucose effectiveness (sG) and insulin sensitivity (sI). Inclusion of glucagon dynamics proves to provide a more detailed representation of the metabolic portrait, enabling estimation of two new diagnostic parameters: glucagon effectiveness (sE) and glucagon sensitivity (δ).ConclusionsThe models are used to investigate how different degrees of pax‘tient glucagon sensitivity and effectiveness affect the concentration of blood glucose and plasma glucagon during IVGTT and insulin infusion tests, providing a platform from which the role of glucagon dynamics during a glucose tolerance test may be investigated and predicted.

Highlights

  • Glucose tolerance testing is a tool used to estimate glucose effectiveness and insulin sensitivity in diabetic patients

  • This study aims to investigate the interaction between glucose, insulin and glucagon during a clinical test by developing two new mathematical models that focus exclusively on glucose-insulin-glucagon dynamics

  • Model validation The accuracy of solutions produced from both the Linear glucagon minimal model formulation (LGMM) and Non-linear glucagon minimal model formulation (NLGMM) were validated against patient data extracted from Thomaseth et al [17] before being used to make new predictions

Read more

Summary

Introduction

Glucose tolerance testing is a tool used to estimate glucose effectiveness and insulin sensitivity in diabetic patients The importance of such tests has prompted the development and utilisation of mathematical models that describe glucose kinetics as a function of insulin activity. The glucose tolerance test (GTT) is a common diagnostic tool used to assess pre-diabetic and diabetic conditions, by measuring changes in blood glucose and insulin after exposure to a large bolus of glucose. Such tests are available in different forms, for example, the intravenous glucose tolerance test (IVGTT) is used to estimate insulin sensitivity (sI), glucose effectiveness (sG), insulin secretion and beta cell function in diabetic patients [10]. Mathematical IVGTT models widely accompany the analysis of IVGTT results and are used to improve the understanding of blood glucose regulation, offering insights into the relationships between key components and to speculate the effects of population considerations [11]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call