Abstract

We present a model of the effects of a marine reserve on spawning stock biomass (SSB) and short- and long-term yield for a size-structured species that exhibits seasonal movements. The model considers the effects of protecting nursery and (or) spawning grounds under a range of fishing mortalities and fish mobility rates. We consider two extremes of effort redistribution following reserve establishment and analyze the effects of a reserve when the fishery targets either mature or immature fish. We apply the model to the Mediterranean hake (Merluccius merluccius) and show that a marine reserve could be highly beneficial for this species. We demonstrate benefits from reserves not just for overexploited stocks of low-mobility species, but also (to a lesser extent) for underexploited stocks and high-mobility species. Greatly increased resilience to overfishing is also found in the majority of cases. We show that a reserve provides benefits additional to those obtained from simple effort control. Benefits from reserves depend to a major extent on the amount of effort redistribution following reserve establishment and on fishing selectivity; hence, these factors should be key components of any evaluation of reserve effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.