Abstract

D3He fuels are often used in ICF implosion experiments, either as a surrogate for DT to restrict the output neutron yield, or to produce protons for use in diagnosis of core conditions. Recent experiments have suggested that capsules filled with D3He do not behave as expected, but that both proton and neutron yields are anomalously degraded relative to the pure D2 case. We have performed direct drive implosion experiments using the Omega laser to examine the effect of 3He on DT-filled glass capsules. The use of DT fuel allows reaction history measurements to be obtained using the Gas Cherenkov diagnostic (GCD). It was hoped that the detailed information provided by GCD measurements would complement existing measurements to constrain modelling. We present recent modelling and analysis of the experiments using radiation-hydrocode simulations, and explore some of the hypotheses proposed to explain the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.