Abstract

The fate of persistent organic pollutants (POPs) in aquatic ecosystems is intimately linked to the cycling of organic matter. In this paper, we present a model of the effect of organic matter decomposition on the distribution of persistent organic pollutants in sediments. The model predicts a diagenetic (sediment-ageing) magnification of chemical concentrations in sediments enriched with labile organic matter. We predict two- to four-fold diagenetic magnification across a wide range of realistic parameter values, and higher levels (up to 20-fold) for labile organic matter in systems with low burial rates (i.e., residence times on the order of years). As an illustration, we apply our model to understand the fate of waste organic matter and associated PCBs discharged by marine fish farms. The available data support both the spatial pattern (as a function of burial rate) and the range of sediment PCB concentrations predicted by our model. This model explains why equilibrium models fail to predict the very high sediment-water partitioning coefficients often observed in the field. Effectively, diagenetic processes impose an additional biomagnification step at the bottom of the detritus-based food web, increasing the exposure to POPs of organisms at higher trophic levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.