Abstract

This paper is concerned with the analysis of pressure transients in damageable elasto-plastic piping systems. The fluid dynamics and pipewall deformation are modelled by the classical water hammer theory, whereas pipewall mechanical behavior is described by an internal variable constitutive theory. The constitutive model coupling plasticity and damage used herein gives rise to a nonlinear hyperbolic problem in which the wavespeeds are altered by damage evolution. The problem is numerically approximated by means of a technique based on an additive decomposition together with the Glimm's method and a special Euler-type time integration scheme. Examples concerning the structural integrity analysis of a reservoir-pipe-valve installation, where hydraulic transients are generated by valve slam, are presented to illustrate the applicability of both theory and numerical method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.