Abstract

The cushion spring plays an important role in an automotive dry-clutch system. It strongly influences the clutch torque transmission from the engine to the driveline through its non-linear load–deflection curve. Therefore, knowledge of the cushion spring compression behaviour is crucial to improve the gearshift performance in an automated manual transmission. Furthermore, the cushion spring compression behaviour is influenced by the temperature because of the frictional heat generation of the clutch facings with the flywheel and the pressure plate surfaces during the engagement phase. In this paper an analysis of the load–deflection curve, taking into account the thermal load to which it is subjected, of a typical passenger car cushion spring is proposed. Six temperatures, in addition to room temperature, were analysed to investigate how the cushion spring load–deflection curve depends on the temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call