Abstract

The sorption kinetics of simazine (6-chloro-N,N′-diethyl-1,3,5-triazine-2,4-diamine), imidacloprid (1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine), and boscalid (2-chloro-N-(4′-chlorobiphenyl-2-yl)nicotinamide), three pesticides of wide use in agriculture, was determined in five different water/soil systems over a time interval from the initial few seconds to about 1 month. In all the experiments, sorption kinetics showed a biphasic pattern characterized by an initial, relatively short phase with a high sorption rate and a later phase with much a lower sorption rate. Initial sorption capacity increased with soil organic carbon content and with sorbate hydrophobicity. We postulate that the first phase of the process involves a fast second-order sorption reaction on superficial sites of soil particles, whereas the second phase depends on diffusion-controlled migration to internal binding sites. A kinetic equation based on this hybrid model accurately fitted all data sets. Less satisfactory results were obtained employing the pseudo-first order, pseudo-second order, Elovich, two site non-equilibrium, or Weber-Morris equation. The superior performance of the hybrid model for describing boscalid sorption probably reflects the high hydrophobic character and consequent low diffusion rates of this compound. The accuracy of modelling was in any case strongly dependent on the time interval considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.