Abstract

The present work explores the use of a numerical model to predict the barotropic tide along the West-Iberian region, extending from the Gulf of Cadiz to the Bay of Biscay and from the shelf to nearby seamounts (Gorringe and Galicia banks). The model is used, in a single isopycnal layer, to simulate the 2D propagation of the following eight principal tidal constituents: M2, S2, N2, K2, K1, O1, P1 and Q1. Astronomical tide-raising force is introduced into the equations of motion in order to improve model results. Recently updated global tide solutions are optimally combined to force a polychromatic tidal spectrum at the open boundaries. New bathymetry is built from hydrographic databases and used to increase the accuracy of the model, especially over the Portuguese continental shelf. Data from several tide gauges and acoustic Doppler current profilers are used to validate the numerical solution. Tidal amplitude and tidal current velocity solutions are evaluated by classical harmonic analysis of in situ and simulated time-series. Model outputs demonstrate the improvement of the regional hydrodynamic tide solution from earlier references. The harmonic solutions highlight small-scale variability over the shelf, and over nearby seamounts, due to the generation of diurnal continental shelf waves and topographic modulation of the semi-diurnal tidal ellipses. The barotropic forcing term is calculated over the study region and the main internal tide generation “hotspots” are revealed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call