Abstract

Laser treatment of port wine stains (PWS) has become an established clinical modality over the past decade. However, in some cases full clearance of the PWS cannot be achieved. To improve the clinical results, it is necessary to match the laser treatment parameters to the PWS anatomy on an individual patient basis. Therefore, knowledge of the PWS structure is of great importance. The objective of this study is to describe a diagnostic method to assess the PWS blood vessels depth and diameter from the skin surface temperature-time course following a diagnostic laser pulse. The Monte Carlo (MC) method was used to calculate the deposited laser energy into a port wine stain skin model following irradiation by a diagnostic laser pulse at 577 nm. The heat equation was solved numerically, using the deposited energy profile as the source term, yielding the temperature-time course at the skin surface. Subtraction of "bloodless" skin signal from that of the skin containing blood vessels gives us the net contribution of a heated dermal blood vessel to the skin surface temperature-time behaviour. The net blood vessel signal shows heat-diffusion behaviour and was found to be sensitive to the dermal blood vessel depth and diameter. The time delay for the peak signal temperature to occur depends quadratically on the blood vessel depth. The peak temperature relates linearly to the blood vessel diameter. The degree of epidermal melanin content can also be determined from the immediate temperature rise of the signal. The proposed method easily enables assessment of the blood vessel depth and diameter as well as the epidermal melanin content in a skin model. The method can be applied to a real PWS when using the adjacent normal skin as a reference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.