Abstract

In the framework of a theoretical approach to the relationship between structure and reactivity of the catalytic centers of enzymes, glyceraldehyde-3 phosphate dehydrogenase (GAPDH) has been chosen as a model enzyme. In GAPDH, the proximity of His176 increases the reactivity of Cys149 at neutral pH; however, its presence alone is not sufficient to explain the reactivity of the catalytic Cys. In order to determine which other interactions play an important role, a study of the geometric and electronic structure of the catalytic site has been made using a hybrid quantum mechanics/molecular mechanics local self-consistent field method. This allows the computation of the electronic properties of amino acid residues in subsystems influenced by other parts of the macromolecule. The quantum subsystem was centered on the Cys149 residue of GAPDH. The structures of GAPDH taken from the crystallographic database did not include hydrogen atoms and these had to be added taking into account the fact that, in the active site, His176 has three tautomeric forms: δ-His protonated, e-His protonated and His+. The results presented here suggest that the most stable His…Cys system in GAPDH is a strongly hydrogen-bonded Cys149 −/His176 + ion pair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.