Abstract

Abstract Despite the long history of rheoencephalography (REG), some important aspects of the method are still debatable. Bioimpedance measurements offer great potential benefit for study of the human brain, but the traditional four or six electrode method suffers from potential misinterpretations and lack of accuracy. The objective of this paper is to study the possible mechanism of REG formation by means of numerical modelling using a realistic finite element model of the human head. It is shown that the cardiac related variations in electrical resistivity of the scalp contributes more than 60% to the REG amplitude, whereas the brain and cerebrospinal fluid are mutually compensated by each over.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.