Abstract

The Plane Strain Compression and Static Recrystallisation Textures of BCC Metals Have Been Simulated Using a Coupled 3D Crystal Plasticity Finite Element (CPFE)-Single Phase Field (PF) Model Using an Interstitial-Free (IF) Steel as an Example. the Recrystallisation Nucleation Is Modelled Based on the Orientation Dependent Recovery (ODR) Theory which Assumes that Deformation Texture Components with a Relatively High Number of Slip Systems Activated during the Plane Strain Compression Undergo a Faster Recovery Process during the Subsequent Annealing due to the Cross Slip of Dislocations and as a Result Will Nucleate Earlier than Others. the Growth of Strain-Free Grains Is Simulated Using the Mis-Orientation Angle Dependent Grain Boundary Energy and Interface Mobility. A Linear Interpolation Method Is Adopted to Map the Data between the CPFE Model of Deformation and the Single PF Model of Recrystallisation. Simulated Results Show a Qualitative Agreement with the Typical Rolling and Annealing Textures Measured Experimentally for BCC Metals. Apart from the Texture and Grain Structure Formed during Deformation and Annealing, the Softening Fraction Can Also Be Simulated Using the Developed Model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.